AUTHOR
TITLE
INSTITUTION
SPONS AGENCI
PUB DATE
CONTBACT
NOTE
EDRS FRICE DESCRIPTORS

Cooper, Gloria S., Ed.; Magisos, Joel H., Ed. Metrics for Commercial, Industrial, Residential Electricity.
Ohio State Univ., Columbus. Center for Vocational Education. Bureau of Occupational and Adult Education (DHEW/OE), Washington, D.C.
76
OEC-0-74-9335
69p.; For related documents see CE 009 736-790
MF-\$0.83 HC-\$3.50 Plus Postage.
*Construction (Process); *Curriculum; Electrical Occupations; *Electricity; Instructional Materials; Learring Activities; Measurement Instruments; *Metric System; Secondary Raucation; Teaching Techniques; Units of Study; *Vocational Education

ABSTRACT

Designed $i o$ meet the job-related metric measurement needs of students interested in commercial, industrial, and residential electricity, this instructional package is one of three for the construction occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of the package are objective-based eraluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers. The material is designed to accommodate a variety of individual teaching and learning styles, e.g.. independent study, small group, or whole-class activity. Exercises are intended to facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. Unit I, a general introduction to the metric system of measurement, provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements, a skill considered useful during the transition to metric in each occupation. (HD)
us deparmentrof enatich EOVCATOM We wishe
 evection
IHIS DOCUMENT HAS GEEN REPRO OUEED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN GIING IT POINTS OF VIFW OR DPINIONS stateo do not necesjarily repre Sen Ioficilal vational nstivue or

TEACHING AND LEARNING

THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are incluided. At the back of this package are objective-based evaluation items, a page of answers to the exarcises and tests, a list of metric materials needed for the activities, references, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teachinglearning strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units, to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the units in an order which emphasizes the sim. plicity of the metric system (e.g, length to area to volume).
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 1 is a general introduction to the metric system of measurement which provides informal, hands.on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notaERIC is explained.

Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks.

Unit 3 focuses on job-related metric equivalents and their relation. ships.

Unit 4 provides experience with recognizing and using metric instruments and toois in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments.

Unit 5 is designed to give students practice in converting customary and metric measurements. Students should leam to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metri: in each occupation,

Using These Instructional Materials

This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring.

This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self.study. References' may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole class activities. Ill of the materials can be expanded by the teacher.

Gloria S. Coopet
Joel H. Magisos
Editors
This publication was developed pursuant 10 conviact No. OEC. 0.74 .9335 with the Bureau of Occupational and. Adult Education, US. Department of Health, Educa. " rion and Wellare. However, the opinions expressed herein do not necepsarily reflect the position ar policy of the U.S. Olfice of Education and no official endorsement by the USOlfice of Education should be inferred.

UNIT

SUGGESTED TEACHING SEQUENCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the eelationship between length, area, and volume.
3. Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objectis to be measured.*
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities.
5. Have the students estimate, measure, and record using Exercises 1 through 5 .
6. Present information on notation and make Table 1 available.
7. Follow up with group discussion of artivities.
*Oher school departments may have devices which can be used. Metric suppliers are listed in the reierence section.

OBJECTIVES

The student will demonstrate these skills for the Linear, Area, Volume or Capraity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here.

SKILLS	EXERCISES					
	Linerir (4 p. 3.4)	$\begin{gathered} \text { Aver } \\ (\text { pp, } 5 \cdot 6) \end{gathered}$	Volume or Cipucity (pp, 7, 8)	$\begin{gathered} \text { Mus } \\ (p p, 9 \cdot 10) \end{gathered}$	Tempeatury $(p, 11)$	
1. Recognize and use the unil and its symbol lor: 2. Select, we, and read the approprite meanuring instrumenta for: 3. Stale or show : physical reference lor:	millimetre (mm) centimette (cm) metre (m)	square centimetre $\left(\mathrm{cm}^{2}\right)$ square melre $\left(\mathrm{m}^{2}\right)$	cubic centi- metre (em^{3}) cubis metre $\left(m^{3}\right)$ litre (I) millititre (m\\|)	gram (B) kilogram (ky)	degree Colsius (c)	
4. Estimate within 255^{5} of the actual meaure	height, width, or length of objech	the neen of a given urflace	capacity of conainers	the mass of objects in grams and kilo. рramı	the tempenture of the air or a liquid	
5. Read correctiy	metre stick, metric lape measure, and metric rulen		mesurements on praduated volume meaur. ing devicts	a kilogram scale and a pram seile	A Celsius themometer	

RULES OF NOTATION

1. Symbols are not capitalized unless the unit is a proper name (mm not MM).
2. Symbols are not followed by periods (m not m .).
3. Symbols are not followed by an for plurals (25 g not 25 gs).
4. A space separates the numerals from the unit symbols (4 not 4)).
5. Spaces, not commas, are used to separate large numbers into groups of three digits (45271 km not $45,271 \mathrm{~km}$).
6. A zero precedes the decimal point if the number is less than one (0.52 g not .52 g).
7. Litre and metre can be spelled either with an re or er ending.

METRIC UNITS, SYMBOLS, AND REFERENTS

Qualutity	Metric Unit	Symbol	Useful Referents
length	millimetre	mm	Thickness of dime or paper clip wize
	centimetre	cm	Width of paper clip
	metre	m	Height of door about 2 m
	kilometre	km	12.minute walking distance
Area	square cantimetre	cm^{2}	Area of this space
	square metre	m^{2}	Area of card table top
	hectare	ha	Football field including sidelines and end zones
Volume and Capacity	millilitre	m]	Teaspoon is 5 ml
	litre	1	A little more than 1 quart
	cubic centimetre	cm^{3}	Volume of this container
	cubic metre	m^{3}	A little more than a cubic yard
Mass	milligram	mg	Apple seed about 10 mg , grain of malt, 1 mg
	pram	8	Nickel about 5 g
	kilogram	kf	Webster's Colleriate Dictionary
	metric ton (1 000 kiiograms)	t	Volkswagen Beetle

METRIC PREFIXES

Multiples and Submultiples	Prefixem	Symbols
$1000000=10^{6}$	mega (metega)	M
$1000=10^{3}$	kilo (kil ${ }^{\text {o }}$)	k
$100=10^{2}$	hecto (hinl ${ }^{\prime}$ tō)	h
$10=10^{1}$	deka (de้k'a)	da
Base Unit $1=10^{0}$		
$0,1=10^{-1}$	deci (deši)	d
$0.01=10^{-2}$	centi (sent ${ }^{\text {cit }}$)	c
$0.001=10^{-3}$	milli (mili)	m
$0.000001=10^{-6}$	micro (mi'kro)	μ

LNEAR MEASUREMENT ACTIVITIES

Metre, Centimetre, Millimetre

L. THE METRE (m)

A. DEVELOP A FEELING FOR THE SIZE OR A METRE

1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you.

THAT IS HOW HIGH A METRE IS!

2. Hold one arm out straght at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers, Where is the other end of the metre stick? Touch your. self at that end.

THATT IS HOW LONG A IEETRE IS!

I. THE CENTIMETRE (cm)

There are 100 centimetres in one metre. If there are 4 metres and 3 centimetres, you write $403 \mathrm{~cm}[(4 \times 100 \mathrm{~cm})+3 \mathrm{~cm}=400 \mathrm{~cm}$ +3 cm .

A. DEVELOP A FEELING FOR THE SIZE OF A CENTIMETRE

1. Hold the metric ruler against the width of voir thumbnail. How wide is it? \qquad cm
2. Measure your thumb from the firs
\qquad cm
3. Use the metric ruleer to find the width ou juur palm.
\square cm
4. Measure your index or pointing finger. How long is it?
\qquad cm
5. Measure your wrist with a tape measure. What is the distance around it? \qquad cm
6. Use the tape measure to find your waist size. \qquad cm
B. DEVELOPYOUR.ABILITY TO.ESTIMATE IN.CENTINETRES

You are now ready to estimate in centimetres. For each of the following items, follow the procedures used for estimating in metres.

How Close Estimate Measurement Were You?

$$
(\mathrm{cm}) \quad(\mathrm{cm})
$$

1. Length of a paper clip.
2. Diameter (width) of a coin.

3. Width of a
postage stamp.
4. Length of a pencil.
5. Width of a sheet
of paper.

AREA MEASUREMENT ACTIVITTES

Square Centimetre, Square Metre

IWHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE.
I. THE SQUARE CENTMETRE (cm^{2})

A. DEVELOP A FEELING FOR A SQUARE CENTIMETRE

B. DEVELOP YOUR ABILLTY TO ESTMATE IN SQUARE CENTIMETRES

You are now ready to develop your ability to estimale in square centimetres.

Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres.

How Close
Estimate Measurement Were You? $\left(\mathrm{cm}^{2}\right) \quad\left(\mathrm{cm}^{2}\right)$

1. Take a clear plasticr ruse the grid on page 6 .
2. Measure the len ") and "f one of these small squares with a curn mety er.

THAT IS ONE SQUARE CENTIMETRE!

3. Place your fingernail over the grid. About how many squares does it take to cover your fingernail?
4. Index card,
5. Book cover.
6. Photograph.
7. Window pane or desk top.

II- THE SQUAREMETRE(m^{2})

A. DEVELOP A FEELING FOR A SQUARE METRE

1. Tape four metre sticks together to make a square which is one metre long and one metre wide.
2. Hold the square up with one side on the floor to see how bigit is.
3. Place the square on the floor in a comer. Step back and look. See how much floor space it covers.
4. Place the square over a table top or desk to see how much space it covers.
5. Place the square against the bottom of a door. See how much of the door it covers. How many squares would it take to cover the door? \qquad m^{2}
THIS IS HOW BIG A SQUARE METRE IS!
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE METRES

You are now ready to estimate in square metres. Follow the procedures used for estimating in metres.

Estinate	
$\left(\mathrm{m}^{2}\right)$	Measurement $\left(\mathrm{m}^{2}\right)$

1. Door.
2. Full sheet of newspaper.
3. Chalkboard or bulletin board.
4. Floor.
5. Wall.
6. Wall chart or poster.
7. Side of file cabinet.

	-	-	T	-	T	-	-	-	-	-	-	-	-			
-																
7																
												7				

VOLUME MEASUREMENT ACTIVITIES

Cubii Centimetre, Litre, Millilitre, Cubic Metre

I. THE CUBIC CENTIMETRE $\left(\mathrm{cm}^{3}\right)$

A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE

1. Pick up a colored plastic cube. Measure its length, height, and width in centimetres.
THAT IS ONE CUBIC CENTIMETRE!
2. Find the volume of a plastic litre box.
a. Place a ROW of cubes against the botiom of one side of the box: How many cubes fit in the row?
b. Place another ROW of cubes against an adjoining side ofithe box. How. many rows fit inside the box tomake one layer of cubes? \qquad
How many cubes in each row? \qquad
How many cubesin the layerin the bottom of the box? \qquad
c. Stand a ROW of cubes up against the side of the box. How many LAYERS would fit in the box? \qquad
How many cubes in each layer? \qquad
How many cubes fitin the box altogether? \qquad
THE VOLUME OF THE BOX IS \qquad CUBIC CENTMETRES.
d. Neasure thc length, width, and height of the box in centimetres. Lengith \qquad cm ; width \qquad cm; height \qquad cm . Multiply these numbers to find the volume in cubiccentimetres:
\qquad cm x \qquad cmx \qquad $\mathrm{cm}=$ \qquad cm^{3}.

B. DEVELOP YOUR ABILITY TO ESTMMTTE IN CUBIC CENTMETRES

You are now ready to develop your ability to estimate in cubic centimetres.

Remember the size of c cubic centimetre. For each of the following items, use the frocedures for estimating in metres.

Tow Close
Estimate Measurement Mere You?
$\left(\mathrm{cm}^{3}\right) \quad\left(\mathrm{cm}^{3}\right)$

1. Index card file
box.
2. Freezer container. \qquad
3. Paper clip bos.

IL. THE LTTRE (I)
A. DEVELOP A FEELING FOR A LITRE

1. Take a one iltre beaker and fill it with water:
2. Pour the water into paper cups, filling eachias full as you usually do. How many cups do you fill?
THAT ISHOW MUCHISIN ONE LITRE!
3. Fill the litre contaner with rice.

THATIS HOW MUCHIT TAKES TO FLLL A ONE LITRE CONTAINER!

Kilogram, Gram

The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matterifom the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity, the mass of:an object is not. For example, the weight of a person on earth might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measurewewight-.it measures mass. We will use the term mass here.

The symbol for gram is g.
The symbol for kilogram is kg.
There are 1000 grams in one kilogram, or $1000 \mathrm{~g}=1 \mathrm{~kg}$,
Half a kilogram can be written as 500 g,or 0.5 kg .
Agquarter of a kilogram can be witten as 250 g, or 0.25 kg .
Two and three-fourths kilograms is written as 2.75 kg .

DEVELOP A FEELING FOR THE MASS OF A KILOGRAM

Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heary the object "feels" and compare it to the reading on the scale or balance.

For the following items ESTIMATE the mass of the object in kilograms, then use the scale or balance to find the exact mass of the object. Write the exact mass in the NEASURENENT colunn. Defermine how close your estimate is:

How Close
Estimate Measuremen
Were You?

1. Bag of rice.

Mass
(kg)

1. 1 kilogram box.
2. Textbook.
3. Bag of sugar.
4. Package of paper.
5. Your own mass.

${ }^{1}$ B: DEVELOP YOUR ABILIPY TO ESTIMATE IN KILOGRAMS

 (kg)```(kg)
```

2. Bag of nails.
3. Large purse or briefcase.
:4. Another person.
4. A few books.

## TEMPERATURE MEASUREMENT ACTIVITIES

## Degree Celsius

1. DEGREE CELSIS $S\left({ }^{\circ} \mathrm{C}\right)$

Degree Celsius $\left(^{\circ} \mathrm{C}\right.$ ) is the metric measure for temperature.
A. DEVELOP A FEELING FOR DEGREE CELSIUS

Take a Celsius thermometer. Look at the marks on it.

1. Find 0 degrees.

WATER FREEZES AT'ZERO DEGREES CELSIUS $\left(0^{\circ} \mathrm{C}\right)$
WATER BOLLS AT 100 DEGREES CELSIUS ( $100^{\circ} \mathrm{C}$ )
2. Find the temperature of the room. $\qquad$ ${ }^{\circ} \mathrm{C}$. Is the room cool, warm, or about right?
3. Put some hot water from the faucet into a container. Find the temperature. $\qquad$ ${ }^{\circ} \mathrm{C}$. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. $\qquad$ ${ }^{\circ} \mathrm{C}$. Dip your finger into the water. Is it cool, coid, or very cold?
5. Bend your arm with the inside of your elbow around the botiom of the thermometer. After about three minutes find the temperature. $\qquad$ ${ }^{\circ} \mathrm{C}$. Your skin temperature is not as high-asyourbody temperature.
NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS $\left(37^{\circ} \mathrm{C}\right)$.

AVERY HICH FEVER IS $40^{\circ} \mathrm{C}$.
B. DEVELOP YOUR ABILITY TO ESTIMATE IN DEGREES CELSIUS

For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and witte the MEASURE. MENT. See how close your estimates and actual measurements are.

How Close
Estimate Measurement Were You?

1. Mix some hot and cold water in a container. Dip your finger into the water.
2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water.
3. Outdoor temperature.
4. Sunny window sill.
5. Mix of ice and water.
6. Temperature at floor.
7. Temperature at ceiling.


## UNIT

## 2

## ObJECTIVES

The student will recognize and use the metric terms, units, and symbols used in this occupa. tion.

- Given a metric unit, state its use in this occupation.
- Given a measurement task in this occupation, select the appropriate metric unit and measurement tool.


## SUGGESTED TEACHING SEQUENCE

1. Assemble metric measurement toois (rules, tapes, scales, thermometers, etc.) and objects related to this occupation:
2. Discuss with students how to read the tools.
3. Present and have students discuss Information Sheet 2 and Table 2.
4. Have students learn occupationally. reated metric measurements by complet. ing Exercices 6 and 7 .
5. Test performance by using Section $A$ of "Testing Metric Abilities."

## METRICS IN THIS OCCUPATION

Changeover to the metric system is under way. Large cormarytrons are already using metric measurement to compete in the world market. The mete: tystem has beenusced in various parts of industrial and scientific communities for years. Lexequation, pastifin 1975, authorizes an orderly transition to use of the metric zystefin, Aiv businessem and industries make this metric changeover, employes will neet touse nyeticic measument in job-reelated tasks.

Table 2 lists those metric terms which are most commonly us. $\%$, this occupation. These terms are replacing the measurement units used currently. inds of job. related tasks use measurement? Think of the many different kindidy in measurements you now make and use Table 2 to discuss the metric terms which repiaft L: m. See if you can add to the list of uses beside each metric term.

## METRIC UNIT" TOIZ COMMERCIAL, INDUSTRIAL, RESTDENTIAL EEECTRICITY

| Quantity | Unit | Symbol | Use |
| :---: | :---: | :---: | :---: |
| Linear dimensions | millimetre | mm | wire theictress, fastenerfiengthand diameter |
|  | sentimetre | cm | meastuefar box openings unctiox sizes |
|  | metre | m | wire lerugths |
|  | Vilometre | km | powemimes, underground pipe, travel,niupping distances, customerar locations |
| Area | square millimetre | $\mathrm{mm}^{2}$ | crossrectional area of wire |
|  | зquare metre | $\mathrm{m}^{2}$ | floor spare for power paneil 00 m size for lighting |
| Volume | qubic centimetre | $\mathrm{cm}^{3}$ | storage apace in cabinet and tool bozeruppace needed for a wiringibox, or space amalinive: inside asuiring box |
|  | rubic metre | $\mathrm{m}^{3}$ | size of a room or buildivg |
| Mass | kilograms | kg | supplies and materials, |
| Heat energy | kilojoule | kJ | Warm airto heat room |
| *Temperature | degree Celsius | ${ }^{\circ} \mathrm{C}$ | used to give ambient reeterence temperature for wire resistance standards, oil temperature |
| Pressure | kilopascal | kPa | measure pressure in air lines |
| Flow rate (liquids or gases) | litres per minute | $1 / \mathrm{min}$ | air flow for heating or cooling |
|  | litres per bour | 1/h | pump or metering capacities |

*Kevin may be wed in some.pmancequecificationsor.technical reports. $273^{\circ} \mathrm{C}=0 \mathrm{~K}, 0^{\circ} \mathrm{C} \equiv 27.3 \mathrm{~K}, 100^{\circ} \mathrm{C}=373 \mathrm{~K}$

[^0]
## TRYNG ©UT METRIC UNITS

Theiverwu practice with metric units, te estimato the measure. ments of theitems below. Write down your at guessineat to the item. Then actuatysmeasure: the item and write down youranswers using the correct metricsymbols. The more you pracese, the easier it will be.


|  | Extimate | Actual |
| :---: | :---: | :---: |
| Mass |  |  |
| 31. Piece of pipe |  |  |
| 32. Motor |  |  |
| 33. Light fixture |  |  |
| 34. Electric panel |  |  |
| 35. 3 metre etick of rigid conduit |  |  |
| 36. 3 metre stick of thin wall conduit |  |  |
| 37. Wall clock |  |  |
| 38. Wire stripper |  |  |
| 39. Alitre of water (net) |  |  |
| Temperature <br> 40. Outside |  |  |
| 41. Inside |  |  |
| 42. Hot water tap |  |  |
| 43. Cold watar tap |  |  |
| 44. Water-cooker water |  |  |
| 45. Trantiormer oil |  |  |
| 46. Temperature of moter bearing |  |  |

## SAMPLE METRIC DRAWING



0 Canduit bent towards you
Conduit bent away from you
-... Conduit in floor
Conduit in wall

## WIRNG WITH METRICS

It is important to know what metric measurement to use. Show what measurement to use in the following situations.


## WIRING WITH METRICS

| 27. Dimensions of outlet box: |
| :--- | :--- |
| a. Length |



SCALE: $1 \mathrm{~mm}=50 \mathrm{~mm}$

## UNIT <br> 3 <br> OBJECTIVE

The student will recognize and use met. ric equivalents.

- Given a metric unit, state an equivalent in a larger or smaller metric unit.


## SUGGESTED TEACHING SEQUENCE

1. Make available the Information Sheets (3.8) and the associated Exercises (8.14), one at a time.
2. As soon as you have presented the Information, have the students complete each Exercise.
3. Check their answers on the page titled ANSWERS TO EXERCISES AND TEST.
4.-Test.performance by-using Section B of "Testing Metric Abilities."

## METRIC-METRIC EQUNALENTS

 Centimetres and Millimetres

Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is $5 \mathrm{~cm}+7 \mathrm{~mm}$ There are 10 mm in each $\mathrm{cm}, \mathrm{so} 1 \mathrm{~mm}=0.1 \mathrm{~cm}$ (one-tenth of a centimetre). This means that $7 \mathrm{~mm}=0.7 \mathrm{~cm}, 5057 \mathrm{~mm}=5 \mathrm{~cm}+7 \mathrm{~mm}$
$=.5 \mathrm{~cm}+0.7 \mathrm{~cm}$
$=5.7 \mathrm{~cm}$. Therefore 57 mm is the same as 5.7 cm .
Now measure the paper clip. It is 34 mm . This is the same as $3 \mathrm{~cm}+$ $\qquad$ mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), $4 \mathrm{~mm}=$ $\qquad$ cm . So, the paper clip is $34 \mathrm{~mm}=3 \mathrm{~cm}+4 \mathrm{~mm}$
$=3 \mathrm{~cm}+0.4 \mathrm{~cm}$
$=3.4 \mathrm{~cm}$. This means that 34 mm is the same as 3.4 cm .

## Information Sheet 3

Now you try some.
a) $26 \mathrm{~mm}=$ $\qquad$ cm
e) $132 \mathrm{~mm}=$ $\qquad$ cm
b) $583 \mathrm{~mm}=$ $\qquad$ cm
f) $802 \mathrm{~mm}=$ $\qquad$
c) $94 \mathrm{~mm}=\square \mathrm{cm}$
g) $1400 \mathrm{~mm}=$ $\qquad$ cm
d) $680 \mathrm{~mm}=$ $\qquad$ cm

## Metres, Centimetres, and Millimetres

There are 100 centimetres in one metre. Thus,
$2 \mathrm{~m}=2 \mathrm{x} 100 \mathrm{~cm}=200 \mathrm{~cm}$
$3 \mathrm{~m}=3 \mathrm{x} 100 \mathrm{~cm}=300 \mathrm{~cm}$,
$8 \mathrm{~m}=8 \times 100 \mathrm{~cm}=800 \mathrm{~cm}$,
$36 \mathrm{~m}=36 \times 100 \mathrm{~cm}=\overline{3} 600 \mathrm{~cm}$.
There are 1000 millimetres in one metre, so

$$
\begin{aligned}
2 \mathrm{~m} & =2 \times 1000 \mathrm{~mm} \\
3 \mathrm{~m} & =3 \times 10000 \mathrm{~mm} \\
6 \mathrm{~mm} & =3000 \mathrm{~mm} \\
6 \mathrm{~m} & =6 \times 1000 \mathrm{~mm} \\
24 \mathrm{~m} & =24 \times 10000 \mathrm{~mm} \mathrm{~m}_{1}
\end{aligned}
$$

From your work with decimals you should know that one-half of a metre can be written 0.5 m (five-tenths of a metre), one.fouth of a centimetre can be written 0.25 cm (twenty.five hundredths of a centimetre).

This means that if you want to change three.fourths of a metre to millimetres, you would multiply by 1000 . So

$$
\begin{aligned}
0.75 \mathrm{~m} & =0.75 \times 1000 \mathrm{~mm} \\
& =\frac{75}{100} \times 1000 \mathrm{~mm} \\
& =75 \times \frac{1000}{100} \mathrm{~mm} \\
& =75 \times 10 \mathrm{~mm} \\
& =750 \mathrm{~mm} . \text { This means that } 0,75 \mathrm{~m}=750 \mathrm{~mm}
\end{aligned}
$$

## Information Sheet 4

Fill in the following chart.

| metre <br> m. | centimetre <br> cm | millimetrin <br> mm |
| :---: | :---: | :---: |
| 1 | 100 | 1000 |
| 2 | 200 |  |
| 3 |  |  |
| 9 |  |  |
|  |  | 5000 |
| 74 |  |  |
| 0.8 | 80 |  |
| 0.6 |  | 600 |
|  | 2.5 | 25 |
|  |  | 148 |
|  | 639 |  |

Now you try some. Complete the following chart.

## Millilitres to Litres

There are 1000 millilitres in one litre. This means that
2000 milililitres is the same as 2 litres.
3000 ml is the same as 3 litres,
4000 ml is the same as 4 litres,
12000 ml is the same as 12 litres.
Since there are 1000 millilitres in each litre, one way to change millilitres to litres is to divide by 1000. For example,

$$
\begin{aligned}
& 1000 \mathrm{ml}=\frac{1000}{1000} \text { litre }=1 \text { litre. } \\
& \text { Or } \\
& 2000 \mathrm{ml}=\frac{2000}{1000} \text { litres }=2 \text { litres. } \\
& \text { And, as a final example, } \\
& 28000 \mathrm{ml}=\frac{28000}{1000} \text { litres }=28 \text { litres, }
\end{aligned}
$$

What if something holds 500 m ? How many litres is this? This is worked the same way:
$500 \mathrm{ml}=\frac{500}{1000}$ litre $=0.5$ litre (five-tenths of a litre ). 50500 ml is the same as one-half $(0.5)$ of a litre.

Change 57 millilitres to litres.

> 57 m ) $=\frac{57}{1000}$ litre $=0.057$ litre (fifty-seven thousand hhs of a litre).

| millilitres | litres |
| :---: | :---: |
| (ml) | $(1)$ |
| 3000 | 3 |
| 6000 |  |
|  | 8 |
| 14000 |  |
|  | 23 |
| 300 | 0.3 |
| 700 |  |
| 2 | 0.9 |
| 250 |  |
| 275 | 0.47 |
|  |  |

Information Sheet 5


## Litres to Millilitress

What do you do if you need to change litres to millilitres? Remember, there are 1000 millilitres in one litre, or 1 litre $=1000 \mathrm{~m}$.

So,
2 litres $=2 \times 1000 \mathrm{ml}=2000 \mathrm{ml}$,
7 litres $=7 \times 1000 \mathrm{ml}=7000 \mathrm{ml}$,
13 litres $=13 \times 1000 \mathrm{ml}=13000 \mathrm{~m}$,
0.65 litte $=0.65 \times 1000 \mathrm{~m}$ 安 $\quad 650 \mathrm{ml}$.

Information Sheet 6
Now you try some. Complete the following chart.

| litres <br> 1 | millilitres <br> ml |
| :--- | :---: |
| 8 | 8000 |
| 5 |  |
| 46 |  |
|  | 32000 |
| 0.4 |  |
| 0.53 |  |
|  |  |

## Kilograms to Grams

To change kilograms to grams, you multiply by 1000 .

$$
\begin{aligned}
& 4 \mathrm{~kg}=4 \times 1000 \mathrm{~g}=4000 \mathrm{~g}, \\
& 23 \mathrm{~kg}=23 \times 1000 \mathrm{~g}=23000 \mathrm{~g} \text {, } \\
& 0.75 \mathrm{~kg}=0.75 \times 1000 \mathrm{~g}=750 \mathrm{~g} .
\end{aligned}
$$

Information Sheet 8
Complete the following chart.

| kilograms <br> kg | grams <br> 8 |
| :---: | :---: |
| 7 | 7000 |
| 11 |  |
| 0.4 | 25000 |
| 0.63 |  |
|  | 175 |

Exercise 13

## Changing Units at Work

Some of the things you use in this occupation may be measured in Exercise 11 different metric units. Practice changing each of the following to metric equivalents by completing these statements.

## Grams to Kilograms

There are 1000 grams in one kilogram. This means that

> 2000 grams is the same as 2 kilograms,
> 5000 g is the same as 5 kg ,
> 700 g is the same as 0.7 kg ;and so on.

To change from grams to kilograms, you use the same procedure for changing from millilitites to litres,

Information Sheet 7
Try the following ones.

| grams <br> 8 | kilograms <br>  |
| :---: | :---: |
| 4000 | 4 |
| 9.000 |  |
| 23000 |  |
| 300 | 8 |
| 205 |  |

a) 500 cm of wire is $\qquad$ m
b) 250 ml of solution is $\qquad$
c) 5 cm diameter pipe is $\quad \mathrm{mm}$
d) 2500 g of oil is $\qquad$
e) 120 mm of tape is $\qquad$ cm
f) 0.25 litre of liquid solvent is $\qquad$ ml
g) 2000 kg of compound is $\qquad$ $t$

h) 0.5 litre of concentrate is
ml
i) 2 m board is $\qquad$ $\mathrm{j}-\mathrm{-}-500 \mathrm{gof}$-nails $\mathrm{is}=$ mm
k) 500 ml of cleaner is
1.) 0.5 of cement is $\qquad$
$\mathrm{m}) 10 \mathrm{~m}$ of wire is $\square \mathrm{cm}$
n) 2.5 cm diameter pipe is $\longrightarrow \mathrm{mm}$
0) 2400 mm wall panel length is $\ldots \mathrm{cm}$

${ }^{\text {UNIT }} 4$
OBiective
The student will recoguize and use instruments, tools, and devices for measurement tasks in this occupation.

- Give metric and Customary tools, instruments, or devices, differentiate between metric and Customary.
- Given a residential electricity task, select and use an appropriate tool, instrument or device.
- Given a metric measurement task, judge the metric quantity within $25 \%$ and measure within $5 \%$ accuracy.


## SUGGESTED TEACHINGSEQUENCE

1. Assemble metric and Custonary measur. ing taols and devices (rules: scales, ${ }^{\circ} \mathrm{C}$ thermometer, drill bits, weaches, misrometer, vernier calipers, feterer gages) andd display in separate groups:at leaming smations.
2. Hlave students examine metric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments.
3. Have students verbally describe charac. teristics.
4. Present or make available Information Sheet 9 .
5. Mix metric and Customary tools or equipment at learning station, Give students Exercise 15 and the appropriate Exercise 16.
6. Test performance by using Section C of "Testing Metric Abiilities."

## SELECTNG AND USING

## METRIC INSTRUMENTS, TOOLS AND DEVICES

Selecting an improper tool or misreading a scale can result in an improper sales form, damaged materials, or injury to self or fellow workers. For example, putting 207 pounds per square inch of pressure (psi) in a truck tire designed for 207 kilopascal s about 30 psi) could cause a fatal accident. Here are some suggestions:

1. Find out in advance whether Customary or metric units, tools, instruments, or products are needed for a given task.
2. Examine the tool or instrument before using it.
3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths.
4. Look for metric symbols on the tools or gages such as $\mathrm{m}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{kPa}$, etc.
5. Look fordecimal fractions (0.25) ordecimal mised fractions ( 250 ) rather than commorifracioins (3;8) on dinl bits, feeler gages, etc.

6: Some products may have a sperial metric symbol such as ablock M to show theyaremetric.
7. Don't force bolts, wenches, oeother devices which are not fitting properly.
8. Practice selecting and using toouls, instruments, and devices.

## WHICH TOOLS FOR THE JOB?

Practice and prepare to demonstrate yourability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appro. priate precision of the tool, instrument, or task.

Select and demonstrate or describe use of itools, instruments, or devices to:

1. Fill a can with 2 litres of lubricating oil S.A.E. 30 .
2. Get 5 kilograms of ragefor your work area.
3. Measure the volume of a small room for a new control console installation.
4. Take the temperature of the room.
5. Determine the distance between adjacent work benches.
6. Estimate the maximumlength of screws needed to mount a motor on a machine.
7. Measure the length of astandard section of conduit.
8. Order a small spool ofnumber 20 magnet wire.
9. Measure the length of one of the welding electrodes on a spot welder.
10.. Measure the width of an electric motor pulley for selecting a belt.
10. Find the length of wire cable needed to hook-up a motor from an overhead buss bar.
11. Measure the diameter of an electric motor drive shaft.
12. Messure the length of bare wire to put around the contact screw on a male plug.
13. Detemine how much wire is needed for a " T " splice.
14. Measure the length of conduit needed to suspend a fluorescent fixture from the ceiling.
15. Measure the size wrench needed to tighten the mounting nut on a rotary switch.
16. Measure 6 metres of entrance cable from the spool.
17. Make the measurements for the wire which was used to wire your classoom switches and outlets.
18. Determine how much conduit is needed in your classroom according to the local code.
19. Select the coupling needed to butt two conduits together:
20. Measure the ambient temperature of a running electric notor.
21. Measure the diameter of the spark plug from a portable power unit.
22. Locate the support pole for the service entrance cable.
23. Select the needed tool to secure a conduit to a switch box.
24. Measure the spacing between the roon lights,
25. Compute the area of the tool room.
26. Measure 10 metres of 6 mm wire.
27. Fill an order for a spool of 2 mm wire.
28. Measure an outlet box to contain two switches.
29. Determine the shipping rass of 12 ceiling outlet boses,
30. Select the drill bit for 6 mm non-metallic thre wire cable.
31. Determine the size of a clamp to fasten the entrance cable to the building.
32. Find the mass of any piece of common house wire 20 metres long to determine the spacing of support staples.

## MEASURING UP IN COMMERCIAL ELECTRICITY

For the tasks below, estimate the metric messurement to within $20 \%$ of actual measurement, and verify the estimation by measuring to within $5 \%$ of actual measurement.

|  | Estimate | Verify |
| :---: | :---: | :---: |
| 1. Width of an "I" beam. |  |  |
| 2. Temperature of cooking area, |  |  |
| 3. Widthiof luminaire ereflectors in room. |  |  |
| 4. Length of luminaire reflectors in room. |  |  |
| 5. Length of chain used to suspend luminaires. |  |  |
| 6. Dimensions of a weatherproof outlet bos: <br> a. Width |  |  |
| b. Height |  |  |
| 7. Height off fise panel. |  |  |
| 8. Length of the threads cut on the end of a rigid conduit. |  |  |
| 9. Thickness of dry wall: <br> a. Side wall |  |  |
| b. Ceiling |  |  |
| 10. Size of hole needed to install a junction box: <br> __a._Length. $\qquad$ |  |  |
| b. Width |  |  |
| 11. The width and height of a raceway that would be required to accept three No. 12 gage wires THW: <br> a. Length |  |  |
| b. Width |  |  |

MEASURING UP IN INDUSTRIAL ELECTRICITY

For the takss below, estimate the metric measurement to within $20 \%$ of actual measurement, and verify the estimation by measuring to within $5 \%$ of actual measurement.

|  | Estimate | Verify | | |
|---|---|---|---|---|
| 1. Physical dimensions of an <br> electrical motor. |  |  |
| 2. Mark on a wall the location of an <br> outlet according to code. |  |  |
| 3. Length of a fluorescent tube. |  |  |
| 4. Dimensions of a ballast: |  |  |
| Height |  |  | | Width |
| :--- |
| 5. Measure a replacement bushing <br> for an electric motor ammature. |
| 6. The dimensions of a safety cover <br> for an electric motor. |
| 7. How much oil will a lubrication <br> cup on a machine hold. |
| 8. Dimensions of a control console: |
| Width |

## Exercise 16

(Industrial Rlectricity)

## MEASURNG UP IN RESIDENTIAL ELECTRICTTY

For the tasks below, estimate the metric measurement to within $25 \%$ of actual measurement, and verify the estimation by measuring to within 5\% of actual measurement.

|  | Estimate | Verify |
| :--- | :--- | :--- |
| 1. Height of wall outlet from floor |  |  |
| 2. Entrance box size: |  |  |
| a. Height |  |  |
| b. Width |  |  |
| 3. Hemperature of soom from lloor for the <br> installation of an electric <br> dryer outlet |  |  |
| 5.Length of wires needed for the <br> installation of the service <br> entrance: |  |  |
| a. Wire from meter box to <br> the mast |  |  |
| b. Wire from the meter to <br> circuit breaker panel |  |  |
| 6. Compute the volume of your |  |  |
| present room |  |  |



## OBJECTIVE

The student will recoguize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table.
- Given a Customary unit, state the ré. placement unit.


## SUGGESTED TEACHING SEQUENCE

1. Assemble packages and containers of materials.
2. Present or make available Information Sheet 10 and Table 3.
3. Have students find approximate metricCustomary equivalenti by using Exercise 17.
4. Test performance by using Section D of "Testing Metric Abilities."

## METRICCUSTOMARY EQUNALENTS

During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed,
2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column,

Table 3 on the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3.

Below is a table of metric-Customary equivalents which tells you what the metric replacements for Customary units are.* This table can be used with Exercise 17, Part 1 and Part 3. The symbol $\approx$ means "nearly equal to."

| $1 \mathrm{~cm} \approx 0.39$ inch | 1 inch $\approx 2.54 \mathrm{~cm}$ | $1 \mathrm{ml} \sim 0.2 \mathrm{tsp}$ | 1 tsp $\approx 5 \mathrm{ml}$ |
| :---: | :---: | :---: | :---: |
| $1 \mathrm{~m} \approx 3.28$ feet | 1 foot $\approx 0.305 \mathrm{~m}$ | $1 \mathrm{ml} \sim 0.07$ tbsp | 1 thsp $\approx 15 \mathrm{ml}$ |
| $1 \mathrm{~m} \approx 1.09$ yards | $1 \mathrm{yard} \approx 0.91 \mathrm{~m}$ | 1 \% 33.8 ffoz | $1 \mathrm{floz} \approx 29.6 \mathrm{ml}$ |
| $1 \mathrm{~km} \approx 0.62$ mile | 1 mile $\approx 1.61 \mathrm{~km}$ | $11 \approx 4.2$ cups | 1 cup $=237 \mathrm{ml}$ |
| $1 \mathrm{~cm}^{2} \approx 0.16 \mathrm{sq} \mathrm{in}$ | 1 sq in $\approx 6.5 \mathrm{~cm}^{2}$ | $11 \approx 2.1$ pts | $1 \mathrm{pt} \approx 0.471$ |
| $1 \mathrm{~m}^{2} \approx 10.8 \mathrm{sq} \mathrm{ft}$ | $1 \mathrm{sq} \mathrm{ft} \approx 0.09 \mathrm{~m}^{2}$ | $11 \approx 1.06 \mathrm{qt}$ | $1 \mathrm{qt} \approx 0.951$ |
| $1 \mathrm{~m}^{2} \approx 1.2 \mathrm{sq} \mathrm{yd}$ | 1 sq yd $\approx 0.8 \mathrm{~m}^{2}$ | $11 \approx 0.26 \mathrm{gal}$ | $1 \mathrm{gal} \times 3.791$ |
| 1 hectare $\approx 2.5$ acres | $1 \mathrm{acre} \approx 0.4$ hectare | $1 \mathrm{gram} \approx 0.0350 \mathrm{z}$ | $102 \approx 28.3 \mathrm{~g}$ |
| $1 \mathrm{~cm}^{3} \approx 0.06 \mathrm{cu} \mathrm{in}$ | 1 cu in $\approx 16.4 \mathrm{~cm}^{3}$ | $1 \mathrm{~kg} \approx 2.2 \mathrm{lb}$ | $1 \mathrm{lb} \approx 0.45 \mathrm{~kg}$ |
| $1 \mathrm{~m}^{3} \approx 35.3 \mathrm{cuft}$ | $1 \mathrm{cuft} \approx 0.03 \mathrm{~m}^{3}$ | 1 metric ton 22051 l | 1 ton $\simeq 907.2 \mathrm{~kg}$ |
| $1 \mathrm{~m}^{3} \approx 1.3 \mathrm{cu} \mathrm{yd}$ | 1 cu yd $\approx 0.8 \mathrm{~m}^{3}$ | $1 \mathrm{kPa} \approx 0.145 \mathrm{psi}$ | $1 \mathrm{psi} \approx 6.895 \mathrm{kPa}$ |

*Adapted from Leet's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH $43215,1975$.

## CONVERSION TABLES

squaly feet to square metres

| ft ${ }^{\prime \prime}$ | $\mathrm{m}^{2}$ | $\mathrm{ft}^{2}$ | $\mathrm{m}^{2}$ | $\mathrm{ft}^{2}$ | $\mathrm{m}^{2}$ | $\mathrm{ft}^{2}$ | $\mathrm{m}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1000 \quad 92.90$ |  |  |  |  |  | 1 | 0.09 |
|  |  | 100 | 9.29 | 10 | 0.93 |  |  |
| 2000 | 185.81 | 200 | 18.58 | 20 | 1.86 | 2 | 0.19 |
| 3000 | 278.71 | 300 | 27.87 | 30 | 2.79 | 3 | 0.28 |
| 4009 | 371.61 | 400 | 37.16 | 40 | 3.72 | 4 | 0.37 |
| 5000 | 464.52 | 500 | 46.45 | 50 | 4.65 | 5 | 0.46 |
| 6000 | 557.42 | 600 | 55.74 | 60 | 5.57 | 6 | 0.56 |
| 7000 | 650.32 | $700^{\prime \prime \prime \prime}$ | 65.03 | 70 | 6.50 | 7 | 0.65 |
| 8000 | 743.22 | 800 | 74.32 | 80 | 7.43 | 8 | 0.74 |
| 9000 | 836.13 | 900 | 83.61 | 90 | 8.36 | 9 | 0.84 |

SQUAPE METRES TO SQUARE FEET

| $\mathrm{mm}^{\prime \prime} \mathrm{ft}^{2}$ | $\mathrm{m}^{2}$ | $\mathrm{ft}^{2}$ | $\mathrm{m}^{2}$ | $\mathrm{ft}^{2}$ | $\mathrm{m}^{2}$ | $\mathrm{ft}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $109 \quad 1076.39$ | 10 | 107.64 | 1 | 10.76 | 0.1 | 1.08 |
| 20012152.78 | 20 | 215.28 | 2 | 21.53 | 0.2 | 2.15 |
| 300 | 30 | 322.92 | 3 | 32.29 | 0.3 | 3.23 |
| $400 \quad 4305.56$ | 40 | 430.56 | 4 | 43.06 | 0.4 | 4.31 |
| $500 \quad 5381.96$ | 50 | 538.20 | 5 | 53.82 | 0.5 | 5.38 |
| $600 \sim 6458.35$ | 60 | 645.83 | 6 | 64.58 | 0.6 | 6.46 |
| Y04 7534.74 | 70 | 753.47 | 1 | 75.35 | 0.7 | 7.53 |
| 840 - 8611.13 | 80 | 8861.11 | $-8$ | 86.11 | $-0.8$ | 8.61 |
| 99098687.52 | 90 | 968.75 | 9 | 96.87 | 0.9 | 9.69 |

Table 3

## ANY WAY YOU WANT IT

1. Your are working in an electrical supply store or warehouse. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be faniliar with approptrite Customary equivalents in order to communicate with customers and suppliets who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the following Customary quantities.

| Customary Quantity | Metric Quantity |
| :---: | :---: |
| a.) 21 b , of graphite |  |
| b) 2 qts , oílube oil |  |
| c) $3 / 4$ in. conduit |  |
| d) 20 ft . of wire |  |
| e) 6 ft.piece of conduit |  |
| f) tworgalon can |  |
| g) 4 in. square box |  |
| h) 8 in. needlenose pliers |  |
| i) 6 fl. oz, of silicone spray |  |
| j) $1 / 2 \mathrm{lb}$ of staples |  |
| k) $1 / 2$ in. screw |  |
| 1) 2 miles |  |

2. Use the conversion tables from Table 3 to convert the following:

a) | $90 \mathrm{ft}^{2}=$ | $\mathrm{m}^{2}$ | $\mathrm{f}) 800 \mathrm{~m}^{2}=\quad \mathrm{ft}^{2}$ |
| ---: | :--- | :--- |
| b) $30 \mathrm{ft}^{2}=$ | $\mathrm{m}^{2}$ | $\mathrm{~g}) 1620 \mathrm{~m}^{2}=\quad \mathrm{ft}^{2}$ |


k) $876 \mathrm{ftt}^{2}=\quad \mathrm{m}^{2}$ n) $1159 \mathrm{~m}^{2}=\quad \mathrm{ft.}^{2}$

1) $46 \mathrm{ft}^{2}=\quad \mathrm{m}^{2}(0) \cdot 490 \mathrm{~m}^{2}=\quad \mathrm{ft}^{2}$
m) $1413 \mathrm{fta}^{2}=\mathrm{m}^{2}$
3. Complete the Requisition Form using the items listed, Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, Job No., etc.).
Requisition one of each of the following:
a) 10 foot piece of $3 / 4$ inch conduit
b) 1 quart of lubrication oil
c) 2 pound can of wire ease
d) 250 foot coil of No . 12 electrical wire
e) 1 carton of 48 inch 2 pin fluorescent lights

REQUIIITION
Date
For $\qquad$

Job No, $\qquad$ Date Wanted

Deliver to $\qquad$

| QTY |
| :--- |
|  |

1. Ono kilogram is about the mass of a:
(A) nickel
[B] apple seed
(C) basketball
[D] Volkswagen "Beetle"
2. A square metre is about the area $0_{i}^{i}$
(A) this sheet of paper
(B) a card table top
(C) a bedspread
[D] a postage stamp
3. The mass of 100 conduit connectors is measured in:
(A] millilitres
[B] cubic metres
(C] kilograms
[D] litres
4. The length of bolts and screws is measured in:
(A) kilograms
[B] millimetres
(C] metres
[D] millilitres
5. The correct way to write twenty grams is:
(A) 20 gms
(B) 20 cm .
(C] 20 g .
(D) 20g
6. The correct way to write twelve thousand millimetres is:
[A] $12,000 \mathrm{~mm}$.
(B) 12.000 mm
(C) 12000 mm
[D] 12000 mm
SECTION B
7. A board 20 centimetres wide is the same as:
[A] 2 millimetres
[B] 200 millimetres
[C] 2000 millimetres
[D] 0,2 millimetre
8. An electric switch with a mass of 350 grams is the same 8 s:
[A] 3500 kilograms
[B] 0.35 kilogram
[C] 3.5 kilograms
[D] 35 kilograms

## SECTION C

9. For measuring millilitres you would. use:
[A] scale
[B] container
[C] pressure gage
[D] ruler
10. For measuring grams you mould use a:
[A] container
[B] scale
[C] pressure gage
[D] ruler

## 11. For measuring kilopascals

 you would use a:[A] container
[B] scale
[C] ruler
[D] pressure gage
12. For measuring in metre you could use a:
[A] containers
[B] scale
[C] tape
[D] prepare sage
13. Estimate the length of the line segment below:
[A] 23 prams
(B] 6 centimetres
[C] 40 millimetres
[D] 14 pascals
14. Estimate the length of the line segment below:
1
|A| 10 millimetres
[B] 4 centimetres
[C] 4 pascals
$\because$ [D] 23 milligrams

## SECTION D

15. The metric unit which replaces the fluid ounce is:
[A] litre
[B] hectare
[C] mullite
[D] gram
16. The metric unit which replaces feet is:
[A] kilogram
[B] metre
[C] millimetre
[D] pascal

| 17. The metric unit which replaces pounds is: |  |  |  |
| :---: | :---: | :---: | :---: |
| [A] mehic tons |  |  |  |
| [B] grams |  |  |  |
| [C] milligrams |  |  |  |
| [D] kilograms |  |  |  |
| 18. The metric unit which replaces the gallon is: |  |  |  |
| [A] cubic metre |  |  |  |
| [B] milibitre |  |  |  |
| [C] gram |  |  |  |
| [D] litre |  |  |  |
| Use this converion table to answer questions 19 and 20 . |  |  |  |
| $\mathrm{m}^{2}$ | ti. ${ }^{2}$ | $\mathrm{m}^{2}$ | At. ${ }^{2}$ |
| 10 | 107.64 | 1 | 10.76 |
| 20 | 215.28 | 2 | 21.53 |
| 30 | 322.92 | 3 | 32.29 |
| 40 | 430.56 | 4 | 43.06 |
| 50 | 538.20 | 5 | 53.82 |
| 60 | 645.83 | 6 | 64.58 |
| 70 | 755.47 | 7 | 75.35 |
| 80 | 861.11 | 8 | 86.11 |
| 90 | 968.75 | 9 | 96.87 |

19. The equivalent of $12 \mathrm{~m}^{2}$ is:
20. The equivalent of $64 \mathrm{~m}^{2}$ is:
[A] $968.75 \mathrm{ft}^{2}$
[B] $64 \mathrm{ft}^{2}$
[C] $688.89 \mathrm{ft}{ }^{2}$
[D] $192 \pi \mathrm{tr}^{2}$

Une this conveasion table to answer questions 21 and 22 .

| mm | in | mm | in. |
| :---: | :---: | :---: | :---: |
| 100 | 3.94 | 10 | 0.39 |
| 200 | 7.87 | 20 | 0.79 |
| 300 | 11.81 | 30 | 1.18 |
| 400 | 15.74 | 40 | 1.57 |
| 600 | 19.68 | 50 | 1.97 |
| 600 | 23.64 | 60 | 2.36 |
| 700 | 27.56 | 70 | 2.76 |
| 800 | 31.50 | 80 | 3.15 |
| 900 | 35.43 | 90 | 3.54 |

21. The equiralent of 150 mm is:
[A] 5.91 in .
[B] 15 in .
[C] 150 in ,
[D] 3.94 in .
22. The equivalent of 610 mm is:
[A] 6.1 in .
[B] 28.84 in ,
[C] 24.01 in .
[D] 61 in .
[A] $107.64 \mathrm{ft}^{2}$
[B] $32.29 \mathrm{ft}{ }^{2}$
[C] $36 \mathrm{ft}{ }^{2}$
[D] $129.17 \mathrm{ft}^{2}$

## EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

## EXERCISE 7

Currently accepted metric units of measurement for each question are shown in Table 3. Standards in each occupation are being established now, so answers may vary'.

## EXERCISE 8

a) 2.6 cm
b) 38.3 cm
c) 9.4 cm
d) 68.0 cm
e) 13.2 cm
f) 80.2 cm
g) 140.0 cm
h) 230.7 cm

## EXERCISES 9 THAU13

Tables are reproduced in total. Answers are in parentheses.

## Exercise 9

| $\begin{array}{\|c} \text { metre } \\ \mathrm{m} \\ \hline \end{array}$ | centimetre $\mathrm{cm}$ | midimetre <br> mm |
| :---: | :---: | :---: |
| 1. | 100 | 1000 |
| 2 | 200 | (2000) |
| 3 | (300) | (3000) |
| () | (900) | 190001 |
| (0) | (500) | 5000 |
| It | (7400) | (74000) |
| 0.8 | 80 | $(800)$ |
| 0.6 | $160)$ | 600 |
| 10,025) | 2.5 | 25 |
| (0.148) | (14.8) | 148 |
| 16.391 | 639 | 163901 |

Exercise 10

| millilitres <br> ml | litres <br> 1 |
| :---: | :---: |
| 3000 | 3 |
| 6000 | $(6)$ |
| $(8000)$ | 8 |
| 14000$)$ | $(124)$ |
| 123000 | 23 |
| 300 | 0.3 |
| 700 | $(0.7)$ |
| $(19001$ | 0.9 |
| 1250 | $(0.25)$ |
| $(470)$ | 0.47 |
| 275 | $(0.275)$ |

Exercise 11


| litres <br> 1 | millilitres <br> ml |
| :---: | :---: |
| 8 | 8000 |
| 5 | $(5000)$ |
| 46 | $(46000)$ |
| $(32)$ | 32000 |
| 0.4 | $(400)$ |
| 0.53 | $(530)$ |
| $(0.48)$ | 480 |


| grams <br> g | kilograms <br> kg |
| :---: | :---: |
| 4000 | 4 |
| 9000 | $(9)$ |
| 23000 | $(23)$ |
| 180001 | 8 |
| 300 | $(0.31$ |
| 275 | $(0.271$ |

## Exercise 12 <br> EXERCISE 17 <br> Part1.

a) 0.9 kg
g) 10.16 cm
b) 1,91 litres
h) 20.32 cm
c) 1.905 cm
i) 177.6 ml
d.) 6.1 m
e) 1.83 m j) 0.0225 kg
k) 1.27 cm
f) 7.58 litres

Exercise 13

| $\begin{gathered} \text { kilogrants } \\ \text { kg } \end{gathered}$ | grams |
| :---: | :---: |
| 7 | 7000 |
| 11 | (11000) |
| (25) | 25000 |
| 0.1 | (100) |
| 0.63 | (630) |
| (0.275) | 175 |

Exercise ! 4

| a) 5 m | i) 2000 mm | m) $131.27 \mathrm{~m}^{2}$ |
| :--- | :--- | :--- |
| b) 0.25 litre | i) 0.5 kg | n) $12,475,37 \mathrm{ft.}^{2}$ |
| c) 50 mm | k) 0.5 litre | o) $5,274,31 \mathrm{ft}.{ }^{2}$ |
| d) 2.5 kg | 1) 500 kg | p) $731.94 \mathrm{ft}.{ }^{2}$ |
| e) 12 cm | m) 1000 cm |  |
| f) 250 ml | n) 25 mm | Part 3. |

The answers depend on the items used for the activities.

Part 3.
a) $3.05 \mathrm{~m} ; 1.905 \mathrm{~cm}$
b) 0.95 litre
c) 0.9 kg
d) 76.25

Pat 2.
a) $8.36 \mathrm{~m}^{2}$
b) $2.79 \mathrm{~m}^{2}$
c) $232.26 \mathrm{~m}^{2}$
d) $9.75 \mathrm{~m}^{2}$
e) $5.85 \mathrm{~m}^{2}$
f) $8,611,13 \mathrm{ft} \mathrm{t}^{2}$
g) $17,437,54 \mathrm{ft}^{2}{ }^{2}$
h) $5,360.42$ ft. ${ }^{2}$
i) $452.09 \mathrm{ft}^{2}$.
j) $3,056.95$ ft. $^{2}$
k) $81.38 \mathrm{~m}^{2}$

1) $4.28 \mathrm{~m}^{2}$
m) $131.27 \mathrm{~m}^{2}$
п) $12,475,37 \mathrm{ft}^{2}$.
o) $5,274,31 \mathrm{ft}{ }^{2}$
p) $731.94 \mathrm{ft.}^{2}$
e) 121.92 cm

TESTING METRIC ABILITIIES

1. C 9. B 16. B
2. B
3. B
4. 
5. C
6. D
7. D
8. B
9. C
10. D
11. D
12. B
13. C
14. D
15. A
16. A
17. $B-15-C-2$

22
8. B

SUGGESTED METRIC TOOLS AND DEVCES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUGH 5 (* Optional)

## LINEAR

Metre Sticks
Rues, 30 cm
Measuring Tapes, 150 cm
*Height Measure
*Metre Tape, 10 m
*Trundle Wheel
*Area Measuring Grid

## VOLLME/CAPACITY

*Nesting Measures, set of 5, $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Economy Beaker, set of 6 , $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$ Metric Spoon, set of 5 , $1 \mathrm{ml} \cdot 25 \mathrm{ml}$ Dry Measure, set of 3, $50,125,250 \mathrm{ml}$
Plastic Litre Boz
Centimetre Cubes

## MASS

Bathroom Scale
*Kilogram Scale
*Platform Spring Scale 5 kg Capacity 10 kg Capacity
Balance Scale with 8-piece mass set
*Spring Scale, 6 ky Capacity

## TEMPERATURE

Celsius Themometer

## SUGGESTED METRIC TOOLS AND DEVICES

 NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKSIn this occupation the tools needed to complete Exercises 6 , 15 , and 16 are indicated by " ."

* A. Assoted Metric Hardware-Hex nuts, washess, ccrews, cotter pins, etc.
B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range
C. Vemier Caliper-Pocket slide type, 120 mm range
* D. Micrometer-Oitside micrometer caliper, 0 mm to 25 mm tange
E. Feeler Gage- 13 blades, 0.05 mm to 1 mm range
F. Metre Tape-50 or 100 m tape
G. Thempometers-Special purpose types such as a clinical thermometer
H. ${ }^{1}$ Temperature Devices-Indicators used for ovens, freezings' cooling systems, etc.
* I. Tools-Metric open end or box urrench sets, socket sets, hex key sets
J. Weather Devices-Rain gage, barometer, humidity, wind velocity indicators
K. 'Pressiure Gages-Tire pressure, air, oxygen, hydraulic, fuel, etc.
L. 'Velocity-Direct reading or vane type meter
M. Road Map-State and city road maps
N. Contaner-Buckets, plastic containers, etc., for mixing and storing liquids

0. Containers-Boxes, buckets, cans, etc., for mixing and storing dry ingredients

Most of the above items may be obtained from local industitial, hardware, and school suppliess, Also, check with your school district's math and science departments and/or local industries for loan of their metic measurement devices.
${ }^{1}$ Measuring devices currently are not available. Subbstitute devices (i.e., thermometer) may be used to complete the measurement task.

Let's Measure Metric A Teccher's Introduction to Metric Measurement Divislon of Educational Redesim and Renewal; Ohio Dopariment of Educa. Hion, 65 S Sront Stree!, Columbus, $\mathbf{O H} 43215,1975,80$ pages; $\$ 1.50$ mut indude check to state treas ures
Activity-oriented introduction to the metric system deasined for indepen. dent or proup iniervice education study, Introductory information about metric meaurement; teproducble exerclses apply metric concepta to common measurement situations; laboratory activities for individuals or groups, Templates for making metre tape, lite box, square centimetre grid.

Measuring with Meters, or, How to Weigh o Gold Brick with a Meter.Stick. Metrication Institute of America, P.O. Box 236, North ield, IL 60093, $1974,23 \mathrm{~min}, 16 \mathrm{~mm}$, sound, color; $\$ 310,00$ purchase, $\$ 31,00$ rental.

Pilm presents units for length, area, volume and mas, relating each unit to many common objects. Screen overprints athow correct use of metric symbola and ease of metric calculation. Relationships among metric meanures of length, area, volume, and mas are llustrated in interesting and vandorgettable ways.

Metric Education, An Annotated Bibliography for Vocational, Technical and Adull Educcation Product Utilization, The Center for Vocational Edu: cation, The Ohio State Undeardy, Columbun, OH 43210, 1974, 149 pager; 110.00 .

Comprehensive bibliogruphy of instuctional materiale, reeference materiali and rusource lust for econdary, postrecondary, teacher educetion, and adult bauc education. Intructional matariah lidexed by 15 occupacional clusters, types of materinds, and educational level.

Metric Edacation, A Position Paper for Vocational/Techniccl and Adall Education Product Utlization, The Center for Vocational Education, The Ohio State Univenity, Columbus, OH 43210, 1975,46 pagen; 83.00.

Paper for teachers, curticulum developers, and adminintrator in voca: tlonal, technical and adult education, Coven isuues in metric education, the metric syitem the impuct of metricaton on yocitond and dechaical ducation, implications of matric intruction for adult basic education, and curiculum and int tructional strateger

Metrics in Career Education Lindbeck, John R, Charles A, Bennett Company, Inc., 809 W: Detweiller Dirve, Peoria, IL $61614,1975,103$ pagee, $\$ 8.60$, paperi, $\$ 2.70$ quantity school purchase.

Presents metric units and notation in a mell. fliustrated manner. Indviduad chapters on metrics in dratting, metalwordens, Foodworking, power and eneryy (rraphic arts, and home economlas. Chapters followed by everal leaning activttes lor tuddent wee, Appendis includes converion tables and chasta.

Taking the Trick Out of Metrice. Motre Tradiling Defartment; Crative Univenal; Inc, Tower 14; 21700 North westom Highmay; Southtild, MI 48975, 1976, 4 booklets; $\$ 8.00$ ench, $\$ 12,00$ met; discounts.
Series of booklata preeents itep by tiep directions, questions, answers on how to rad metric measurement tools; micrometer, vemies caliper, rules, dial indicitom:

## METRIC SUPPLIERS

Hown \& Shappe Manulacturing CO, Precison Park; North Kingotown, RII 02862
 squares, depth tasees, calipas, dial ladicatos, converulon charti nid puddes.
Dick Blick Company, P, O, Box 1267 , Gilesburg, iL 61401
Instructional quality rules, tupes, metre atcks, cuben, helght meanues, trunde wheals, meauring cups and spoons; petional scales, remi/dllogram scales, feeler and depth pager, beakeix, themometan, tha and other add.

Millimetar Induutal Supply Copp, 162 Centrid Avenue, Farmingdale, L.L., NY 11735

Induttinl fattenco, taps, dies, reamers, drills, wrenches, rina, buahings, calipen, teel rules and tapes, feeler graer.

Ohaur Scale Copporation, 29 Hanover Bod, FIorham Part, NJ, 07932
Precidon balances and ccales, pladtic calipes and staclable gam cubes for beginnen:

## INHORMATION SOURCES

American Nationil Metric Councli, 1625 Mamechueetsa Avenue, N.W., Wabiligton, DC 20096

Chuth, poiten, reporta and pamphleta, Metric Reporter newletter, Nationd metric coordhattog covirut tive eventing indurty, government, education, profeusonal ind taide orpacizat onas.

Metric Committee, Nitional Eloctricul Manutactures Amoclation (NBMA), 155. Bat 44th Stret, Nem York NY 10017

Trade asoclition, Publications concernlers product tandeded and metic chan peover in do ochicel poodi maniutacturtins:

Nitional Buereau of Standers, Officc of Iaformation Activiter, US. Department of Commarce, Wadiniton, D C 20234.

Fine and inexpenave metric charte and publication, aleo lendis filma and dipplayi.


[^0]:    NOTE: All other electrical wimesure currenty metric and they will not change.
    NEMA will beimecinginformation on electrical metric standards in the future.

